Name _____ Block _____ Date _____

Tell whether the equation shows direct variation, inverse variation, or neither

1.
$$y = \frac{1}{3x}$$
 2. $y = -\frac{1}{5}x$

3. The variables x and y vary inversely, when $y = \frac{1}{2}$, x = -6. Write an equation relating x and y. Then find y when x = -3.

4. The variables x and y vary directly when $x = \frac{5}{2}$ and $y = \frac{5}{4}$. Write an equation relating x and y. Then find x when y = -5.

Determine whether x and y show direct or inverse variation or neither. Write the equation describing the relationship.

5	
J	٠

×	У
-3	-140
-5	-84
10	42
17.5	24
20	21

υ.	
×	у
-4	6
0	0
4	-6
-6	9
10	-15

6

7.	
Х	У
-2	3
4	6
6	7
10	9
14	11

Concept #1 – Multiplying and Simplifying Rational Expressions

Strategy - Factor the numerator and denominator of each fraction is possible, then cancel common factors from the numerator and denominator.

8.
$$\frac{3x^2}{3x+15} \cdot \frac{x+5}{x^2-x}$$
 9. $\frac{x^2-2x}{x^2+2x+1} \cdot \frac{x^2+4x+3}{x^2+3x}$ 10. $\frac{81x^9}{y^4} \cdot \frac{x^2y^2}{36x^5y}$

Concept #2 – Dividing and Simplifying Rational Expressions Strategy – Flip the fraction that follows the division sign. Factor the numerator and denominator of each fraction, then cancel common factors from the numerator and denominator.

$$11. (x^{2} + 10x - 24) \div \frac{x^{2} - 144}{3x - 36} \qquad 12. \frac{x^{2} - 9x - 22}{x^{2} + 5x - 24} \div \frac{x + 2}{x - 3} \qquad 13. \frac{x^{2}}{x^{2} - 4} \div \frac{2x}{x + 2}$$

Concept #3 - Adding Rational Expressions

Strategy – Find a common denominator and change both fractions to have this denominator. Add the numerators of each fraction, and simplify.

14.
$$\frac{2x-1}{8x} + \frac{x+1}{8}$$

15. $\frac{12}{x} + \frac{4}{5}$
16. $\frac{x}{x^2 + x - 2} + \frac{1}{x + 2}$

Concept #4 - Subtracting Rational Expressions

Strategy – Find a common denominator and change both fractions to have this denominator. Subtract the numerators of each fraction and simplify.

$$17. \frac{2x^2 - 4x + 8}{3} - \frac{5x^2 - 6x - 1}{3} | 18. \frac{4x}{x^2 - 4} - \frac{3}{x + 2} | 19. \frac{5}{x + 1} - \frac{2}{x + 3} | 19. \frac{5}{$$

Concept #5 - Complex Fractions/ Complex Rational Expressions

Strategy – Follow addition, subtraction steps to get a single fraction in the numerator and a single fraction in the denominator. Then follow multiplication and division steps.

20.
$$\frac{\frac{3}{x^2 - x} + \frac{1}{x - 1}}{\frac{x - 5}{x^2 - 1} - \frac{3}{x + 3}}$$

Concept #6 - Solving Equations by multiplying by the LCD - check for false solutions!

*If you get a value for x that makes the denominator of the original problem = 0, then it is a false solution.

21	2x	3x	22	4x-4	2x-2
<u> </u>	$\overline{x+3}$	$\overline{x-3}$		x-1	x+1

23. $\frac{3}{x} - \frac{1}{2} = \frac{12}{x}$

$$24. \quad \frac{x+3}{2} - 4 = \frac{2x-1}{5}$$